
 1

Time Constrained Requirements Engineering with Extreme Programming
– An Experience Report

Erik Lundh
Compelcon AB

Helsingborg, Sweden
erik.lundh@compelcon.se

www.compelcon.se

Martin Sandberg
netMage AB

SE-224 64 Lund, Sweden
martin.sandberg@netmage.se

www.netmage.com

Abstract

Requirements engineering is a core practice within
eXtreme Programming. Practising teams learn to not
abandon any of the interconnected core practices. The
continuous feedback teaches the team that they will
develop at a faster and more reliable pace with the full set
of practices. This paper shares an experience of how
teams could accelerate development out of necessity,
while maintaining their established core process,
including requirements engineering. In this paper we
discuss some issues of timing, continuous requirements
engineering and sustainable pace.

1. Introduction
Contrary to common belief, rapid development does not
mean that you have to throw requirements engineering out
of the window.

We believe that most developers would rather use a
minimal core development process that includes efficient
requirements engineering, than start out by trying to pick
and choose from a larger, arguably richer process
framework. A minimal core process, that the team trusts,
will be used even when time pressure usually would tempt
them to cut corners.

We find support for our point of view in experiences that
the netMage team gained from adopting the agile
methodology eXtreme Programming (XP) [1],[2].

There are several papers and articles that discuss the
strengths and weaknesses of XP. We will point out some
benefits with respect to requirements engineering that
teams like netMage have attained from XP.

One objection to Extreme Programming is that
requirements engineering is overlooked as a development
phase and that problems are solved by pushing the
problems forward to the next iteration, as they occur. A
reason for these assumptions might be that the XP
literature does not describe requirements engineering as
an independent phase. However, requirements engineering
is a core practice in XP and plays a significant role
throughout the XP development cycle.

2. Requirements Engineering in XP

2.1. Requirements Engineering
Requirements engineering is the process of establishing
the services that the customer requires from a system and
the constraints under which it operates and is developed.
There are a number of generic activities common to all
requirements engineering processes [4]:

• Elicitation

• Analysis

• Validation

• Management

Elicitation is a definition of the system in terms
understood by the customer. Analysis is a technical
specification of the system in terms understood by the
developer. Validation is concerned with showing that the
requirements define the system that the customer wants.
Requirements management is the process of managing
changing requirements during the requirements
engineering process and system development.

2.2. Extreme Programming
Extreme Programming is an agile methodology that has
gained increasing popularity and acceptance in the
software community. XP promotes a discipline of

 2

software development principles of communication,
feedback, simplicity, and courage. It is designed for use
with small teams who need to develop software quickly in
an environment of rapidly changing requirements.

The four requirement engineering activities listed in
section 2.1 above, are core activities of XP. Duncan states
in [5] that “The primary vehicle for requirements
elicitation in XP is the addition of a member of the
customer’s organization to the team.” We agree on the
importance of customers in the team, but we also believe
that the Planning Game is the primary vehicle for
requirements engineering in XP.

The team has one or several members that are customers.
The customer team member brings the team knowledge on
what the users want and a business perspective. The
customer could come from sales and marketing or a
domain expert from a representative customer or, in
contract or in-house development, a domain expert from
the customer who pays for the project.

The practice to make customers part of the team is often
referred to as “onsite customer”, since the early XP
projects were contract work. We use the shorter
“customer” to define any team member that generates
functional requirements. Usability experts are often great
additional customers in a team.

The team elicits functional requirements expressed as user
stories from team members that are customers.

In the planning game, developers tell customers how
much work they can do in an iteration. The developers
then select and prioritise the functionality they want in this
iteration. Developers then define, order and prioritise
engineering tasks to implement the desired functionality.
The customers decide what the product should do, the
developers how to do it and how much they can do in each
iteration.

Figure 1 A Planning Game

Since at least one customer is always present, or available
on 15 minutes call, throughout the development he or she
is available to answer questions and clear up ambiguity.
The following is based on Don Wells
extremeprogramming.org[2] description of XP. We add
our own experiences of the development process in XP
and make an emphasis on the requirements engineering
and customer activities.

2.2.1. Elicitation and Analysis during Planning Game
Each planning game, except the very first one, begins with
a delivery of the work products of the previous iteration,
often including installation and demonstration of the
current product.

At the first iteration: If there is an old or similar product
the team uses a demo of it as a starter for the first planning
game. The demo is important and the only exception is at
the very first iteration of a new product with no legacy.

The customers have to sign off on the acceptance tests of
each implemented user story in the previous iteration.
Each iteration of the XP development cycle starts with a
Planning Game at the iteration-planning meeting.

The customers of the team write or select new user stories
(Figure 2) based on the fresh impressions of the current
product. Customers often bring prewritten stories to the
meeting, but the selection and priorities are usually
affected by impressions from the current product.

Figure 2 The User Story US119 with final estimate 8h

Each user story is written on a new index card. Each user
story is uniquely numbered, like receipts in a simple
bookkeeping scheme. Our numbering scheme is simple:
We mark the first user story of a project “US1”. The next
US2, US3, etc. We keep track of numbering for user
stories (USxx), acceptance tests(ATxx) and engineering

 3

tasks (ETxx)., We have a single place were we note the
highest used number for each of these. Most teams
appreciate the numbering since it brings an intuitive feel
for the size of things.

The team always adds, generates and prioritises among
user stories based on the product’s current status at the
planning game at hand. All user stories get prioritised in
three basic “lanes”(Figure 3): Must Have Now, Can Wait,
and Nice To Have. The long-term release plan (Figure 4),
usually introduced after the team has grown confident
with the constant reprioritization and small releases,
contains an additional number of milestone releases or
“lanes”, with user stories in priority order for each of
these milestones.

Figure 3 Basic three lanes requirements priorities

Typical high-priority user stories in each “milestone lane”
affect other teams and subprojects, such as hardware
development, or are much anticipated by key customers in
beta test programs.

Customers present user stories to developers in priority
order from the “Must Have Now” row. Developers make
rough time estimates that are written on each user story’s
index card. If a story cannot be estimated it goes back

over the table to the customers to be rewritten, split or
down-prioritized to a later iteration.

Figure 4 Release plan with milestone lanes

The developers tell the customers how much work they
can do in this iteration. Different teams have different
ways to define units of work. Some uses “ideal time”,
some use points. The important thing is that the
developers have a scaling factor, velocity in XP
terminology, between available workdays times available
developers and the amount of work that the team can do.
The team does not count activities outside the project into
their estimates. They use the velocity factor as a heuristic
that gets adjusted after each iteration. Things like sick-
days or off-site company activities do not affect the
velocity, it affects the number of available workdays. But
normal day-to-day activities affect the velocity. The work
that can be done is the available developers multiplied by
the available calendar days divided by the velocity.

Based on these rough estimates, the customers then
choose a set of prioritized stories that fill up the iteration.
They usually prioritize a few extra at the end to cover for
the case where things go smoother than estimated.

After that the developers start to break down the stories in
engineering tasks and make an estimate on each task. The
engineering tasks are uniquely numbered throughout the
project (ET1, ET2, etc). The engineering task is also
marked with the number of the user story that it
implements part of.

The task estimates are summed up to each user story. The
customers now have another opportunity to reprioritize
among stories based on the more detailed estimates.
Again, it is recommended to always have a few extra
stories broken down into engineering tasks, if things speed
up.

The iterations are time-boxed for several reasons. That
means each iteration has a fixed duration and ends at a

 4

fixed date. If the team runs out of stories before the end of
the iteration, we need to cast an extra planning game. The
planning game has an overhead of a couple of hours for
the whole team. Better to have a few extra stories at the
back of the iteration plan. We don’t want to change the
pace of the time-boxed iterations to make the team’s
estimation heuristics more meaningful. It is also much
easier to synchronize the iterations with other projects if
we stick with a regular time-boxed pace of equal-sized
iterations.

Figure 5 An iteration plan develops during planning game

A software release often consists of a number of iterations
(Figure 6). An iteration-planning meeting is called at the
beginning of each iteration to run a Planning Game that
produces that iteration's plan of programming tasks.

Implement

Planning Game

Iterate

Release 1

Implement

Planning Game

Iterate

Release 2

Implement

Planning Game

Iterate

Figure 6 Relationship between iterations and releases

Each iteration is one to three weeks long. Iterations
usually have a fixed interval during a project, to improve
estimation heuristics and provide time-boxing and fixed
releases as benefits to external stakeholders. The customer
chooses a number of user stories for the iteration. The
developers translate the user stories into engineering
(programming) tasks that realize them. The tasks are
written down on cards. The time to complete the tasks is
estimated by the developers and written on the task cards,
then the estimates are added up for the whole user story.

Then the customer prioritises the user stories in order of
the most valuable first. These task cards are the detailed
plan for the iteration.

Documentation is produced throughout the XP
development cycle. The mandatory documentation
consists of the user stories, programming tasks and
acceptance tests that are all documented on paper cards.
Everything can of course be documented electronically for
later review but what typically gets documented
electronically are the acceptance tests as they are the
definition of the system and needed for regression testing.
Additional documentation, such as, requirements analysis
documents written according to a client’s preferred
standard, for example, IEEE; system documentation,
quality assurance documents, user manuals etc can be
defined in user stories and delivered together with the
system after each iteration. Documentation is not taken for
granted in an XP project. Instead it is a deliverable that
gets prioritised according to business value. Short cycles
and intense development, often with a system-wide scope;
give high visibility to which documents are essential
during the project. The customers have to put business
value on necessary documents that are needed to maintain
the end product and further develop it in new generations.

Figure 7 Requirements repository - XP style

2.2.2. The customer’s perspective
An XP project starts with the customer writing user
stories on paper cards. The stories are written by the
customers as things that the system needs to do for them.

Writing user stories is the XP practice to elicit
requirements from customers. They are in the format of
about three sentences of text written by the customer in
the customer’s terminology without technological-syntax.
That is, details of specific technology, data base layout,

 5

and algorithms should be avoided. The stories should be
focused on user needs and benefits as opposed to
specifying GUI layouts. User stories should only provide
enough detail to make a reasonably low risk estimate of
how long the story will take to implement. However, user
stories have a lot in common with low-fi usability
requirements engineering such as paper prototyping [9].
When the time comes to implement the story the
developers could go to the customer on the team and
receive a detailed description of the requirements face to
face. User stories also drive the creation of the acceptance
tests. The team assigns one developer, the Tester role, at
the outset of each iteration with the added responsibility
that good acceptance tests get developed together with the
customer.

Acceptance tests (Figure 8) are created from user stories.
During an iteration the user stories selected during the
iteration planning meeting will be translated into
acceptance tests. Many teams ask the customers, already
at the planning game, to specify at least one acceptance
test for each user story that the customers include in the
upcoming iteration. The customer specifies scenarios and
criteria that determine when a user story has been
correctly implemented. A story can have one or many
acceptance tests, what ever it takes to ensure the
functionality works. Acceptance tests are black box
system tests. Each acceptance test represents some
expected result from the system. Customers are
responsible for verifying the correctness of the acceptance
tests and reviewing test scores to decide which failed tests
are of highest priority. Acceptance tests are also used as
regression tests prior to a production release. A user story
is not considered complete until it has passed all its
acceptance tests. Acceptance tests should be automated so
they can be run often.

Figure 8 AT50 is an acceptance test for US119

2.2.3. The developer’s perspective
During the planning game, the developers on the team
break down each user story into one or several
engineering tasks (Figure 9). The tasks are ordered in a
row under each user story. If several stories depend on the
same task, the task ends up under the most important
story. This is the XP way of resolving requirements
dependencies. The placement and prioritisation of
engineering task are the responsibility of the developers.
The engineering tasks are numbered.

Figure 9 Engineering task ET85 implements part of
US119

Each iteration a team member takes the responsibility of
the Tracker role. The tracker keeps track of actual effort
spent on each engineering task, and write the down on the
tasks index card. The tracker also collects other metrics
that the team agree they have use for. The tracker updates
the velocity factor at the end of the iteration.

Spike solutions are created to figure out answers to tough
technical or design problems. Spikes are often created to
reduce uncertainty in estimates. A spike solution is a very
simple program to explore potential solutions to
implement functionality expressed in user stories or
engineering tasks. The spike is a small proof of concept or
benchmark program in itself, which only addresses the
problem under examination, and ignores all other
concerns. Spikes could also be for example a script that
creates and exercises a database, giving a feel for the
performance or the size of an implementation in code.
Spikes should not be good enough to keep, so we plan to
throw them away. The goal is to reduce the risk of a
technical problem or increase the reliability of a user
story's estimate.

During the iteration a developer picks the engineering task
with the highest priority. The developer invites a peer to

 6

pair up with for the task. They start to work on the task,
maybe with a quick design session at the whiteboard, but
the first code written is always unit tests that deepen the
understanding of the functionality the task should
produce. New questions might arise that had not been
obvious during the planning game and that have not been
explained in the user story. As the customer is part of the
team, they walk over to her, ask the questions and receive
the needed input. The unit tests are written first, followed
by production code with the desired functionality. As the
understanding of the task deepens, the tests might be
improved. Developers continuously implement
functionality to meet current requirements and then
refactor the code to clarify its intent, make it more
maintainable, etc [8]. To implement and refactor is to
recognize and embrace stepwise refinement, write or
modify just enough code to solve the task at hand, and
then refine the solution to a certain finish. The technical
definition in the words of Martin Fowler[8] “Refactoring
is the process of changing a software system in such a way
that it does not alter the external behaviour of the code yet
improves its internal structure.” After a while refactoring
becomes a state of mind and the team refactors their
planning, user stories and tests as well as the product
code. In some cases there is no clear line between
optimisation (in a broad sense) and refactoring.

When all tasks to fulfil a story are finished the developers
alert the customer to have it acceptance tested. The user
stories and acceptance tests make up the customers
functional and non-functional requirements in XP.

3. The project – XP in fast forward

3.1. Background
netMage is a software company developing enterprise
solutions that create, aggregate and distribute enterprise
information. This experience report deals with the work
on the first release of a product, which amounted to six
months, during June 2001 – December 2001.

The project involved eleven people: six developers, a
technical architect who doubled as acceptance tester; the
customer group comprising of a sales representative, a
product manager, usability engineer and an administrator.
The product was developed using the Microsoft .NET
framework, when .NET was still a beta release and a new
3rd party platform from the company Anoto for digital
paper functionality, which was also a beta release. Both
these platforms were subject to change during the course
of the project.

netMage had previously used a traditional software
development methodology influenced by RUP (Rational

Unified Process) and related heavyweight methodologies
and quality assurance practices. The methodology had
involved a requirements process and a development
process where results were shown to the customer only at
the late stages of the project. The character of the
company’s products, such as, corporate portals did not fit
in well with the methodology in place.

The company had a few developers who were very
technologically savvy but not so experienced in working
according to software processes and in teams. Martin
Sandberg, the Quality Manager, tried to guide the
developers in the direction of software best practices
through introducing a traditional development
methodology with its associated processes. It proved
difficult to make the less experienced developers
understand the need and usefulness of these practices. If
you do not understand why you are doing something you
are inclined to do it half-heartedly or you do not do it as it
was intended. Some developers were also coding cowboys
who worked more individually than as a team. Due to the
waterfall-like development process market input came in
at the very beginning of the project during requirements
elicitation and then they went away while the system was
developed to return when it was to be delivered often
discovering that their expectations had not been met or
that their view on the upfront requirements had changed.

Martin wanted to change the methodology to something
more agile and iterative and went to a conference on XP,
organized by Erik Lund, to get new ideas on how to
improve the process and the working culture in the
company, especially the cooperation between the
marketing and development departments. After having
learnt more about XP at the conference and through
literature Martin was very pleased to see that XP involved
many of his own experiences from successful practices
and projects and added a few more practices, which he
believed in but had not tried himself in any project. What
especially appealed to him was that XP provided a
minimalist core set of team processes “out of the box”,
which were ready to start using and that there was enough
literature to support the introduction of the process
without having to write and adopt a process.

When a new project was started with new technologies
combined with vague and changing requirements; Martin
suggested they should try XP, which is designed for use
with small teams who need to develop software quickly in
an environment of rapidly changing requirements.
Management understood the shortcomings of the existing
methodology and agreed to try XP on the new project.

Erik Lundh was contracted as the external XP coach while
Martin Sandberg acted as internal onsite coach. The
project started off with an introductory training in XP,

 7

followed by coaching during the course of the project.
Erik usually introduces a new XP team with two or three
half-day XP seminars with at least a few days digestion
time in between. The last seminar often ends with a
planning game of the first iteration of the team’s first XP
project. Erik typically only coach onsite half a day at a
time during projects. This way he keeps the external
perspective of the project. He never allows a team to
include him as a development resource in the planning. In
Erik’s experience, an external coach should be present at
every planning game to share the team’s view of priorities
and be able to give the proper coaching support during the
following iteration.

3.2. A time constrained experience
The aim of the project was to develop a web content
management solution for refining handwritten messages
(Figure 10). The messages are created using digital paper
and digital ink [3]. Before the project was started a minor
feasibility study was carried out. The requirements for the
functionality were elicited gradually during the course of
the project. The team chose a web messaging system as its
metaphor.

Four and a half months into the six-month project, XP was
an established backbone process for the team. Every team
member knew and trusted the core practices and how they
interacted. The team felt productive, confident and proud
of their work. They had experienced “flow”[10] on
several levels, as individuals, in pairs and as a team. Pair
programming time was referred to as “flow time”. One
day a new potential client showed interest in the product.
A meeting with the client was scheduled for the following
day, as the client would be passing through on other
business. Word of this meeting reached the product
manager after business hours. In order to make a good
impression on the client it was desirable to show a new
feature that was still only a concept in the mind of the
customer group within the team.

The team was highly motivated and knew that a successful
demonstration the next day would be very good for the
team as well as the company. The team put their trust in
the work pattern that they now felt comfortable with. No
one went to the office to work through the night until the
deadline. They knew that a focused team effort, within
their everyday minimalist process, the next day would be
more likely to succeed. This was a significant vote of
confidence in the team’s established agile process.

The following morning, during the stand-up meeting, all
project members were, as usual, briefed about the status.
But this morning was special. It was decided to put all
other work aside and do the most of the opportunity
presented to the team. The two-week iteration was then

only halfway through. A few new user stories were
identified and written down to wrap-up the current state of
the iteration. Then the requirements for the new feature
were written in new user stories. The user stories were
broken down into programming tasks, time estimated and
prioritised. The planning was done in matter of minutes
instead of hours. The fallback strategy was to demonstrate
the version of the software built on the previous day.

Figure 10 The Anoto pen

As the developers started on their tasks, the customers,
some of them with web design and human computer
interaction skills, created the graphics and the interaction
for the new feature. Later in the day that input was given
to the developers who implemented the feature, assisted
by the customers. Integration of the pair developers’ work
was carried out and everything was acceptance tested. The
team finished the work just in time for the product
manager to demonstrate it to the client in the evening.

Some clean up, refactoring, was needed on the following
day but the implementation had resulted in “the simplest
thing that could possibly work”.

 8

XP in Fast Forward (XPiFF) was later repeated in
additional scenarios and projects.

4. Discussion

4.1. Is XP complete?
We have seen some papers and presentations regarding
the limitations of XP. Usually a non-practitioner tries to
compare XP to one or several process frameworks such as
the Unified Process. It is our belief that such comparisons
have a limited value. eXtreme Programming is a
condensed minimalist set of development practices,
presented with an approach that caters to the developer,
and have a scope that teams and individuals can grasp, at
least after a minimal period of practice. XP is a core
pattern and a backbone that teams can rely on. Teams that
use only XP “by the book” or pick and choose among
practices are less successful than teams that have
experienced full XP as described in the literature and by
the community and then grow their own core process on
that experience.

The first XP project at netMage was a focused effort that
involved the whole company and all of its resources.
Martin Sandberg notes that in current projects, the staff is
much more open to methods and processes from “heavy-
weight methodologies”. Martin introduced, after the
successful first XP project, certain practices that adapt and
complement the teams core XP process to better handle a
portfolio of multiple projects. The team embraces them in
a way that was not possible before their successful XP
process experience.

4.2. What made XPiFF work?
• A functioning team with confidence in its lean

and well understood process.

• Several months of experience with the process at
a normal pace.

• A well defined, familiar problem domain and a
well defined product metaphor.

It is clear that the netMage team would not have been able
to make a one-day iteration at the outset of the project.
The product domain, the .NET environment and XP were
all new to them. But after just a few months of practice
with their integrated core XP process, in this new and
complex environment, it was still more natural to stick
with the process than to “hack away” when faced by time
constraints and stress.

4.3. The relation between XP and CMM level 5

Mark Paulk has compared the Capability Maturity Model
(CMM) and XP in detail in [6].

Paulk also suggests in [7] that a well functioning XP team
could, as a team - not the whole organization, qualify for
a successful CMM level 4 assessment. CMM level 4 is the
managed level, with measurements guiding decisions. Few
software organizations in the world have qualified above
level 3 or 4. Note: A team performing at CMM level 4 or
even level 5, the optimising level, is not the same as a
whole organization being at the same level. CMM
assessors trained by SEI do not look at a single team; they
look at an organization.

Do teams, officially assessed as high-maturity, succeed in
following their process under time pressure?

The legendary group that builds the NASA space shuttle
software had a large influence on the definition of the
higher levels of the CMM model. Normally shuttle
software is built in cycles of months. We have heard
stories of this team being able to run their full process in
fast forward, cutting down a release cycle to days, on
several occasions. We wanted to get the facts straight and
Sweden’s leading CMM assessor, Fredrik Westin, told us
to contact Ted W Keller, the former project coordination
manager for the shuttle software. We asked Mr Keller for
the true facts of one of the stories about shuttle software
changes “in fast forward” that we heard. Mr Keller read
an early draft of this paper and came back with a kind
reply, and a better story:

“Perhaps a better example would be another (of the many)
incidents I frequently shared in such presentations, which
had to do with an in-flight (hardware) failure of an attitude
control jet on the Shuttle during mission STS-68 in 1994,
a problem, which, left unresolved, would have prevented
the Radar Mapping objectives of the mission from being
accomplished and likely would have prematurely forced
termination of the mission. Our team was able to exploit
our Mature SEI CMM Level 5 Process in real-time
(during the mission) to analyze the options for modifying
the flight control code, to "design" a very simple code
change to reassign the functionality of other attitude
control jets that would result in equivalence to the original
capability (before the jet failed), to make the code change,
to have the code change inspected by our own team as
well as all NASA crew, control, and safety experts, to
execute the complete governance and configuration
control processes to allow such a change to get into the
flight code, to fully test the change and re-test the
resulting flight control system in simulators and in code
execution test cases, to conduct and complete the NASA
flight readiness certification of the change, to formally
deliver the revised code to NASA, and support NASA in

 9

the transmission and installation of the revised code into
the executing code onboard the Shuttle in orbit. The
successful execution of this process enabled the mission to
continue and succeed. The software process steps that
were executed in this incident usually required 3.5 weeks
to complete in an expedited path, just due to the built in
prerequisites for such life-critical code. On this particular
occasion, the entire process (no step missed, no short cut
taken, except the deviation from the standard process
which required 3 day advance notice and review materials
for the reviews) was completed in less than 8 hours, in
order to save the mission. For this, our team received
NASA awards and were invited to be in the NASA
Mission Control Room for the landing of the mission,
which we had saved. One of our programmers was invited
to climb the ceremonial ladder and hang the mission
plaque on the wall, a tradition at NASA signifying another
successful Shuttle mission.” – Ted W Keller, IBM Global
Services

Figure 11 Space shuttle cargo bay on mission STS-68

The shuttle team executed every step of their well-known
field-proven CMM level 5 process, but very fast. The only
deviation from the standard process was review meetings
not being announced three days in advance.

We do not suggest that the netMage team is at level 5, but
we observe some CMM level 5 characteristics as
described by SEI-trained CMM assessors.CMM level 5 is
the highest maturity level: optimising. Among the
characteristics: continuous improvement and change,
ability to successfully change or adapt processes and tools
even during projects.

What we do think is that XP mature teams quickly. Mark
Paulk in [6] suggests that XP and CMM complement each
other. According to Paulk CMM tell you what you need to
do to mature on each level, but very little on how. XP on
the other hand focuses on how. The XP how-to approach

counts on the team to gain insight in what they are doing
from actual experience.

Erik Lundh is currently coaching XP pilot projects on
teams in a large development organisation, working
closely together with Fredrik Westin, CBA IPI, SW-CMM
and P-CMM assessor XP give a team a quick, well-
defined path to a certain level of maturity, while CMM
give a whole organization a roadmap to maturity. In an
organization with the majority of its staff in software
development, we think that process orientation and
process improvement will be much more appreciated by
both development and market organization when they
have an XP experience.

5. Summary
The experiences described in this paper point out that the
adoption of a core agile process, XP, gave the team at
netMage a backbone to rely on when the development
needed to be accelerated temporarily. They were able to
engineer requirements under time-constraints, both old
and new ones.

As XP is a condensed process every team member
understands it and can act upon requirement changes. A
successfully established XP team does not abandon core
practices because of time constraints. They are more
confident with executing their familiar condensed
minimum-overhead process at a faster pace.

netMage now has a core methodology that it can build
upon and trust when change is swift or the process needs
to be sped up. The project members also know that they
can rely on everybody always knowing what to do, as
everyone has experienced the full methodology.

Give a team a full development cycle process they can
quickly master, that makes sense, and gives visible results.
That team will stick with their core process even in
difficult times, and will be much more receptive to
sensible process improvements. They have experienced
success and put trust in their process, but have most
certainly already made small improvements and
adaptations on their own.

XP is a lean team-oriented software development process.
Once the team has a gut feeling for the XP practices and
rules, you can supplement them with methods, techniques
and tools that can produce even better business value
according to the characteristics of the particular project.

 10

6. About the authors
Erik Lundh, Compelcon AB

Erik Lundh has 20 years of experience of product oriented
software development.

Erik is an independent that still knows the ins and outs of
code, but prefers to offer his consultancy time as a mentor
and coach to companies that develop software for
products. He serves as an advisor to management and as a
director at the board of select companies.

Erik currently stimulates improvements by acting as coach
to several XP-teams working with product oriented
software development.

Martin Sandberg, netMage

Martin is in his seventh year of experience in development
and management of component based software and
systems integration projects, as well as in various software
development methodologies and quality standards. Martin
was the product manager in the project and also acted as
internal coach. Prior to this project Martin was the Quality
Manager of netMage.

7. References

[1] Kent Beck, eXtreme Programming – Embracing
Change, Addison Wesley 1999.

[2] http://www.extremeprogramming.org
[3] http://www.anotofunctionality.com
[4] Ian Sommerville, Software Engineering 6th ed.,

Addison-Wesley 2000.
[5] Richard Duncan, The Quality of Requirements in

Extreme Programming, Mississippi State University.
[6] Mark Paulk, Extreme Programming from a CMM

Perspective, Software Engineering Institute 2001,
online at: http://www.sei.cmu.edu/cmm/papers/xp-
cmm-paper.pdf

[7] Mark Paulk’s comments in IEEE Dynabook eXtreme
Programming 2000, online at:
http://www.computer.org/SEweb/Dynabook/PaulkCo
m.htm

[8] Martin Fowler, Refactoring, Addison Wesley 1999
[9] The INUSE Handbook section 3.3.1: Paper

Prototyping. (One of several descriptions of the
method.) Available online at
http://www.ejeisa.com/nectar/inuse/6.2/3-3.htm

[10] Mihaly Csikszentmihalyi, Flow: The Psychology of
Optimal Experience, HarperCollins 1991

